Addressing High Frequency Challenges for Burn-in Requiring LVDS

Rolando Reyes
Analog Devices Inc.

BiTS Workshop March 5 - 8, 2017

Contents

- Introduction
- Addressing Various LVDS Issues
- Design of Experiments
- Results and Discussion
- Recommendation
- Acknowledgement

Addressing High Frequency Challenges for Burn-in Requiring LVDS

Launch Pad - Load Boards & Burn-in Boards

Introduction

- LVDS = Low Voltage Differential Signaling
- It is also known as TIA/EIA-644, a standard entitled "Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits"
 - ❖ TIA = Telecommunication Industry Association
 - ❖ EIA = Electronic Industries Alliance

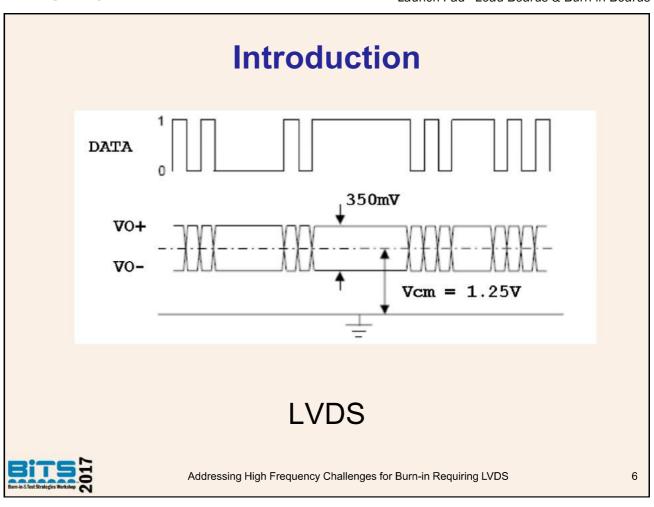
Addressing High Frequency Challenges for Burn-in Requiring LVDS

Introduction

 LVDS is a low voltage, low power, differential technology used primarily for point-to-point and multi-drop driving applications

Addressing High Frequency Challenges for Burn-in Requiring LVDS

Launch Pad - Load Boards & Burn-in Boards

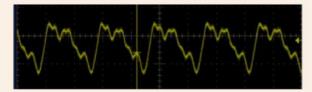


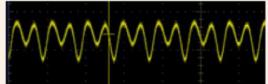
Burn-in & Test Strategies Workshop

www.bitsworkshop.org

March 5-8, 2017

Launch Pad - Load Boards & Burn-in Boards




Burn-in & Test Strategies Workshop

www.bitsworkshop.org

March 5-8, 2017

Introduction

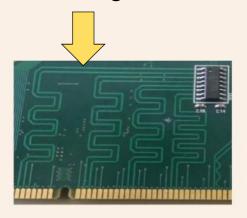
Sample scope shots of 27 MHz single-ended signals captured on burn-in boards

- Harmonic Distortion
- Doubled Frequency
- Attenuation beyond 100 MHz

Addressing High Frequency Challenges for Burn-in Requiring LVDS

March 5-8, 2017

7


Burn-in & Test Strategies Workshop

www.bitsworkshop.org

Launch Pad - Load Boards & Burn-in Boards

Addressing Various LVDS Issues

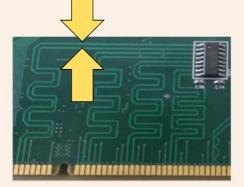
- LVDS, a pair of PCB traces
 - 1) Differential traces should be as close as possible after leaving the driver output

Addressing High Frequency Challenges for Burn-in Requiring LVDS

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

March 5-8, 2017

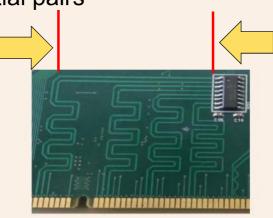

Launch Pad - Load Boards & Burn-in Boards

Addressing Various LVDS Issues

LVDS, a pair of PCB traces

2) Distances between differential LVDS signals should remain constant on the entire length of the

traces

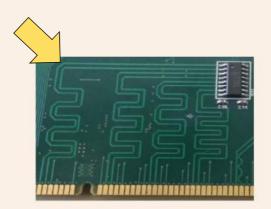


Addressing High Frequency Challenges for Burn-in Requiring LVDS

Addressing Various LVDS Issues

- LVDS, a pair of PCB traces
 - 3) Electrical lengths should be the same between differential pairs

Addressing High Frequency Challenges for Burn-in Requiring LVDS

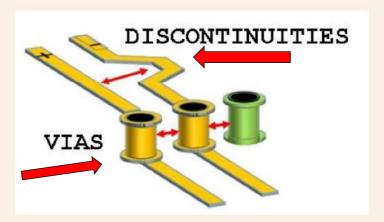

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

March 5-8, 2017

Addressing Various LVDS Issues

- LVDS, a pair of PCB traces
 - 4) Arcs or 45° traces for each turn of traces


Addressing High Frequency Challenges for Burn-in Requiring LVDS

March 5-8, 2017

Launch Pad - Load Boards & Burn-in Boards

Addressing Various LVDS Issues

- LVDS, a pair of PCB traces
 - 5) Minimize number of vias and other discontinuities

Addressing High Frequency Challenges for Burn-in Requiring LVDS

Launch Pad - Load Boards & Burn-in Boards

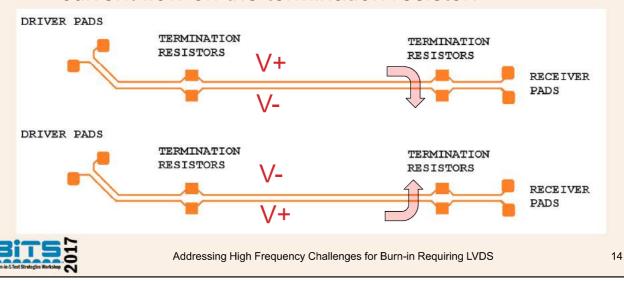
Addressing Various LVDS Issues

- LVDS, a pair of PCB traces
 - 6) Parasitic loading (e.g. capacitance) must be present in equal amounts to each line

"Symmetry is KEY"

Addressing High Frequency Challenges for Burn-in Requiring LVDS

Burn-in & Test Strategies Workshop


www.bitsworkshop.org

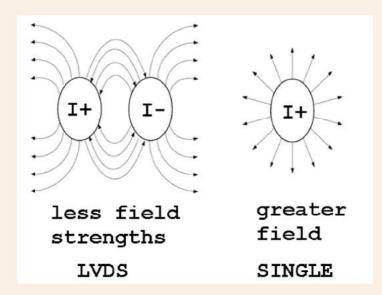
March 5-8, 2017

Addressing Various LVDS Issues

Electromagnetic Interference

When the driver switches from logic high to logic low or vice versa, it changes the direction of current flow on the termination resistor.

Burn-in & Test Strategies Workshop


www.bitsworkshop.org

March 5-8, 2017

Addressing Various LVDS Issues

Electromagnetic Interference (EMI)

LVDS generates lesser EMI

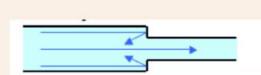
Addressing High Frequency Challenges for Burn-in Requiring LVDS

March 5-8, 2017

15

Burn-in & Test Strategies Workshop

www.bitsworkshop.org


Launch Pad - Load Boards & Burn-in Boards

Addressing Various LVDS Issues

Impedance Matching

Good Impedance Matching

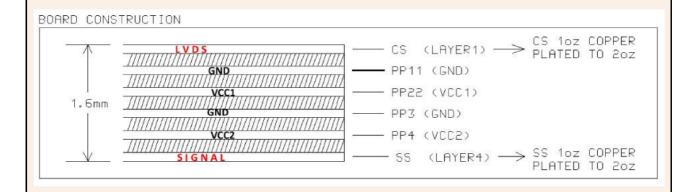
With reflection

Improper Impedance Matching

Addressing High Frequency Challenges for Burn-in Requiring LVDS

Burn-in & Test Strategies Workshop

www.bitsworkshop.org


March 5-8, 2017

Launch Pad - Load Boards & Burn-in Boards

Addressing Various LVDS Issues

Crosstalk

To isolate LVDS signal layers from single-ended, POWER and GND planes are placed in between

Addressing High Frequency Challenges for Burn-in Requiring LVDS

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

March 5-8, 2017

Launch Pad - Load Boards & Burn-in Boards

Addressing Various LVDS Issues

High Temperature Deration

LVDS drivers are outside the hot zone chamber area

Power Supply

High Speed Clock Card

LVDS Module

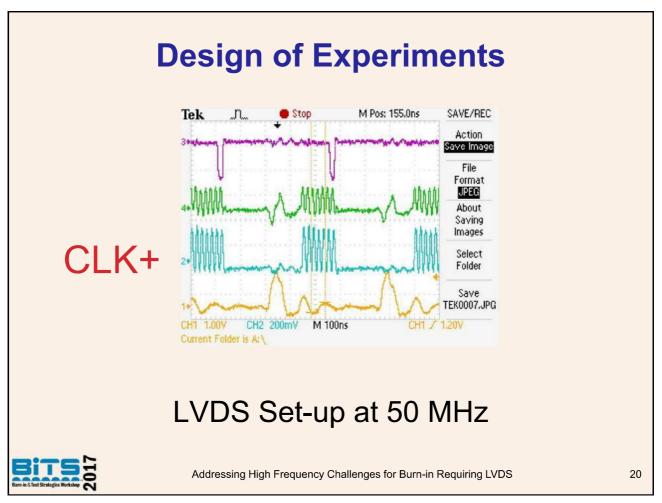
Addressing High Frequency Challenges for Burn-in Requiring LVDS

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

March 5-8, 2017

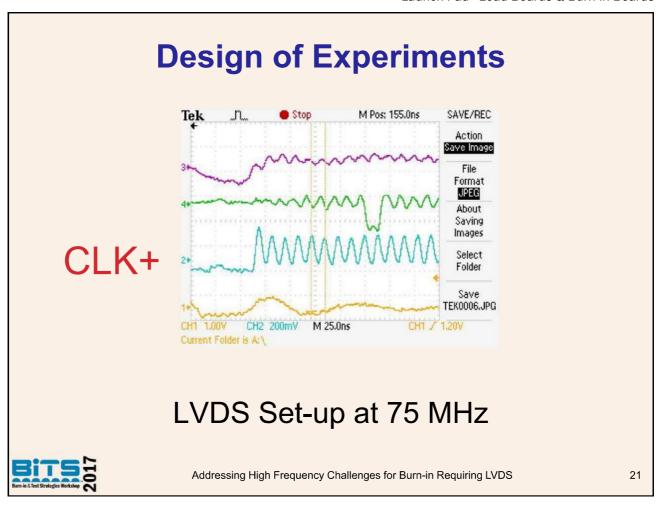
Design of Experiments


Objective:

 Check what is the maximum frequency that the LVDS set-up can generate

Addressing High Frequency Challenges for Burn-in Requiring LVDS

Launch Pad - Load Boards & Burn-in Boards



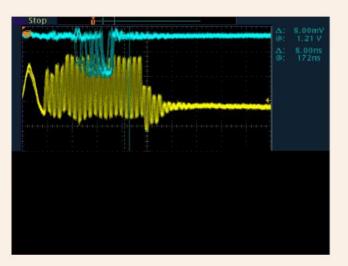
Burn-in & Test Strategies Workshop

www.bitsworkshop.org

March 5-8, 2017

Launch Pad - Load Boards & Burn-in Boards

Burn-in & Test Strategies Workshop


www.bitsworkshop.org

March 5-8, 2017

Launch Pad - Load Boards & Burn-in Boards

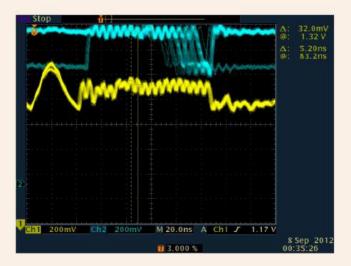
Design of Experiments

CLK+

LVDS Set-up at 125 MHz

Addressing High Frequency Challenges for Burn-in Requiring LVDS

Burn-in & Test Strategies Workshop


www.bitsworkshop.org

March 5-8, 2017

Launch Pad - Load Boards & Burn-in Boards

Design of Experiments

CLK+

LVDS Set-up at 200 MHz

Addressing High Frequency Challenges for Burn-in Requiring LVDS

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

March 5-8, 2017

Launch Pad - Load Boards & Burn-in Boards

Results and Discussion

1678	Set-up Remarks
Frequency	
50Mhz	Passed
75Mhz	Passed
120Mhz	Passed
200Mhz	Frequency acquired but the
	levels are degraded

The LVDS Set-up can generate up to 200 MHz but the highest frequency achieved with good signal integrity is 120 MHz.

Addressing High Frequency Challenges for Burn-in Requiring LVDS

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

March 5-8, 2017

Launch Pad - Load Boards & Burn-in Boards

Recommendation

To achieve better results:

- 1) Further board developments
- 2) PCB CAD simulations
- 3) Bench Tests and Experiments
- 4) High RF Capability of Instruments
- 5) Avoid Edge Finger connections: Use high temp coax cables

Addressing High Frequency Challenges for Burn-in Requiring LVDS

Burn-in & Test Strategies Workshop www.bitsworkshop.org

March 5-8, 2017

Acknowledgement

- John Keane, Global Reliability and System Development Manager, for the engineering technical support and supervision
- Pat Duggan, Abrel Senior Engineer, for the board design of the LVDS module and Endzone driver boards
- Peter O'Donovan, Abrel Test Engineer, for the technical support
- Joe Berkery, Abrel CAD Engineer, for the CAD design of burn-in boards.
- Rochyll Amarille, PCB & Burn-in Development Manager, for the support and supervision.
- Ernani Mateo, Senior RF PCB Design Engineer, for the guidelines and support to RF and LVDS designs.
- Eric Escalante, RF PCB Design Engineer, for the guidelines and support to RF and LVDS designs.

Addressing High Frequency Challenges for Burn-in Requiring LVDS